28 research outputs found

    A numerical investigation on active engine mounting systems and its optimization

    Get PDF
    In this paper, based on the previous research experiences in the lumped parameter modeling and study of active control mounts (ACM) model, an analytical model of active ACM in powertrain is developed and implemented in MATLAB. In order to validate this newly developed model in this work, a finite element analysis (FEA) method is conducted in ANSYS and the results of FEA is compared with analytical model for validation. After the validation, the control strategy is integrated into the analytical model by using the linear quadratic regulator (LQR) method. Numerical results show a good control performance. Furthermore, this work examines the application of genetic algorithms (GA) in optimizing the weight matrices of LQR. An optimal configuration is obtained and thus this approach could help the practical design of ACM systems

    Associations between computed tomography markers of cerebral small vessel disease and hemorrhagic transformation after intravenous thrombolysis in acute ischemic stroke patients

    Get PDF
    BackgroundHemorrhagic transformation (HT) is common among acute ischemic stroke patients after treatment with intravenous thrombolysis (IVT). We analyzed potential relationships between markers of cerebral small vessel disease (CSVD) and HT in patients after IVT.MethodsThis study retrospectively analyzed computed tomography (CT) data for acute ischemic stroke patients before and after treatment with recombinant tissue plasminogen activator at a large Chinese hospital between July 2014 and June 2021. Total CSVD score were summed by individual CSVD markers including leukoaraiosis, brain atrophy and lacune. Binary regression analysis was used to explore whether CSVD markers were related to HT as the primary outcome or to symptomatic intracranial hemorrhage (sICH) as a secondary outcome.ResultsA total of 397 AIS patients treated with IVT were screened for inclusion in this study. Patients with missing laboratory data (n = 37) and patients treated with endovascular therapy (n = 42) were excluded. Of the 318 patients included, 54 (17.0%) developed HT within 24–36 h of IVT, and 14 (4.3%) developed sICH. HT risk was independently associated with severe brain atrophy (OR 3.14, 95%CI 1.43–6.92, P = 0.004) and severe leukoaraiosis (OR 2.41, 95%CI 1.05–5.50, P = 0.036), but not to severe lacune level (OR 0.58, 95%CI 0.23–1.45, P = 0.250). Patients with a total CSVD burden ≥1 were at higher risk of HT (OR 2.87, 95%CI 1.38–5.94, P = 0.005). However, occurrence of sICH was not predicted by CSVD markers or total CSVD burden.ConclusionIn patients with acute ischemic stroke, severe leukoaraiosis, brain atrophy and total CSVD burden may be risk factors for HT after IVT. These findings may help improve efforts to mitigate or even prevent HT in vulnerable patients

    White Matter Injury After Intracerebral Hemorrhage

    Get PDF
    Spontaneous intracerebral hemorrhage (ICH) accounts for 15% of all stroke cases. ICH is a devastating form of stroke associated with high morbidity, mortality, and disability. Preclinical studies have explored the mechanisms of neuronal death and gray matter damage after ICH. However, few studies have examined the development of white matter injury (WMI) following ICH. Research on WMI indicates that its pathophysiological presentation involves axonal damage, demyelination, and mature oligodendrocyte loss. However, the detailed relationship and mechanism between WMI and ICH remain unclear. Studies of other acute brain insults have indicated that WMI is strongly correlated with cognitive deficits, neurological deficits, and depression. The degree of WMI determines the short- and long-term prognosis of patients with ICH. This review demonstrates the structure and functions of the white matter in the healthy brain and discusses the pathophysiological mechanism of WMI following ICH. Our review reveals that the development of WMI after ICH is complex; therefore, comprehensive treatment is essential. Understanding the relationship between WMI and other brain cells may reveal therapeutic targets for the treatment of ICH

    Influence of bus stop land use characteristics on passenger waiting time satisfaction ‐ A case study in Guangzhou

    No full text
    Researchers usually conduct a questionnaire survey at bus stops to obtain data regarding the satisfaction of bus passengers with waiting times. The results are affected by many factors. Among them, the land use of the bus stops was proved to have an important impact on the survey results. The main contribution of this paper is the introduction of propensity score matching (PSM) into the evaluation of passenger waiting time satisfaction. By eliminating interference factors, this paper can quantify the impact of the various land use types of bus stops. On this basis, a method to modify the survey results of passenger waiting time satisfaction is proposed. This paper takes data pertaining to passenger satisfaction with bus service quality in Guangzhou City in 2018–2019 as an example, and the findings include that: different land use types of sites have different effects (positive or negative) on passenger waiting time scores. Also, matching propensity scores can balance the distribution of covariates between the treatment and control groups, effectively excluding the interference of other factors. After correcting the original rating results, this study found that 61.84% of the routes\u27 waiting time ratings were overestimated. This finding indicates that data correction is necessary to accurately identify passenger waiting time ratings. The waiting time satisfaction of people using residential stations can best reflect the actual level. Therefore, it is suggested that stations with residential land use in each administrative area should be taken as representatives to conduct a waiting satisfaction survey

    Simulation and Prediction of the Impact of Climate Change Scenarios on Runoff of Typical Watersheds in Changbai Mountains, China

    No full text
    Simulating the hydrological process of a river basin helps to understand the evolution of water resources in the region and provides scientific guidance for water resources allocation policies between different river basins and water resources management within the river basin. This paper provides a scientific basis for the sustainable development of regional water resources and an accurate grasp of the future change trend of runoff by analyzing the hydrological process response of runoff in typical watersheds in Changbai Mountains, China, to climate change. The applicability of the HEC-HMS (The Hydrologic Engineering Center’s-Hydrologic Modeling System) hydrological model in the watershed is verified by calibrating and verifying the daily rainfall-runoff process in the watershed during the wet season from 2006 to 2017. The daily rainfall data of the two scenarios SSP2-4.5 and SSP5-8.5 under the BCC-CSM2-MR model in the 2021–2050 CMIP6 plan were downscaled and interpolated to in-basin stations to generate future daily precipitation series to predict runoff response to future climate change. The daily rainfall data of the two scenarios were downscaled and interpolated to the stations in the basin to generate future daily rainfall series to predict the runoff response under future climate changes. The average certainty coefficient of the HEC-HMS model for daily runoff simulation reached 0.705; the rainfall in the basin under the two climate scenarios of SSP2-4.5 and SSP5-8.5 in the next 30 years (2021–2050) will generally increase, and rainfall will be more evenly distributed in the future; the outlet flow of the basin will increase during the wet season (June–September) in the next 30 years, but it is lower than the historically measured value; the peak flow of the future will appear at most in August and September. The peak flow current time mostly appears in July and August. The time of peak occurrence has been delayed

    Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance

    No full text
    The safe, flexible, and environment-friendly Zn-ion batteries have aroused great interests nowadays. Nevertheless, flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection, which severely impedes the future applications of Zn-ion batteries especially at high current densities. Gel electrolytes are emerging to tackle this issue, yet the required high modulus for inhibiting dendrite growth as well as concurrent poor interfacial contact with roughened Zn electrodes are not easily reconcilable to regulate the fragile Zn/Zn2+ interface. Here we demonstrate, such a conflict may be defeated by using a mechanoadaptive cellulose nanofibril-based morphing gel electrolyte (MorphGE), which synergizes bulk compliance for optimizing interfacial contact as well as high modulus for suppressing dendrite formation. Moreover, by anchoring desolvated Zn2+ on cellulose nanofibrils, the side reactions which induce dendrite formation are also significantly reduced. As a result, the MorphGE-based symmetrical Zn-ion battery demonstrated outstanding stability for more than 100 h at the high current density of 10 mA·cm−2 and areal capacity of 10 mA·h·cm−2, and the corresponding Zn-ion battery delivered a prominent specific capacity of 100 mA·h·g−1 for more than 500 cycles at 20 C. The present example of engineering the mechanoadaptivity of gel electrolytes will shed light on a new pathway for designing highly safe and flexible energy storage devices

    Understanding Phase Stability of Metallic 1T-MoS2 Anodes for Sodium-Ion Batteries

    No full text
    We discuss metallic 1T-MoS2 as an anode material for sodium-ion batteries (SIBs). In situ Raman is used to investigate the stability of metallic MoS2 during the charging and discharging processes. Parallel first-principles computations are used to gain insight into the experimental observations, including the measured conductivities and the high capacity of the anode

    Portable Near-Infrared Technologies and Devices for Noninvasive Assessment of Tissue Hemodynamics

    No full text
    Tissue hemodynamics, including the blood flow, oxygenation, and oxygen metabolism, are closely associated with many diseases. As one of the portable optical technologies to explore human physiology and assist in healthcare, near-infrared diffuse optical spectroscopy (NIRS) for tissue oxygenation measurement has been developed for four decades. In recent years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been emerging as a portable tool for tissue blood flow measurement. In this article, we briefly describe the basic principle and algorithms for static NIRS and dynamic NIRS (i.e., DCS). Then, we elaborate on the NIRS instrumentation, either commercially available or custom-made, as well as their applications to physiological studies and clinic. The extension of NIRS/DCS from spectroscopy to imaging was depicted, followed by introductions of advanced algorithms that were recently proposed. The future prospective of the NIRS/DCS and their feasibilities for routine utilization in hospital is finally discussed

    Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI-PLGA nanoparticles for the treatment of triple negative breast cancer

    No full text
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based combination therapy and gene therapy are new strategies to potentially overcome the limitations of TRAIL, however, the lack of efficient and low toxic vectors remains the major obstacle. In this study, we developed a hyaluronic acid (HA)-decorated polyethylenimine-poly(d,l-lactide-co-glycolide) (PEI-PLGA) nanoparticle (NP) system for targeted co-delivery of TRAIL plasmid (pTRAIL) and gambogic acid (GA) in triple-negative breast cancer (TNBC) therapy. GA was encapsulated into the core of the PEI-PLGA NPs while pTRAIL was adsorbed onto the positive NP surface via charge adsorption. The coating of HA on PEI-PLGA NPs functions as a targeting ligand by binding to CD44 receptor of TNBC cells and a shell to neutralize the excess positive charge of inner NPs. The resultant pTRAIL and GA co-loaded HA-coated PEI-PLGA NPs exhibited spherical shape (121.5 nm) and could promote the internalization of loaded cargoes into TNBC cells through the CD44-dependent endocytic pathway. The dual drug-loaded NPs significantly augmented apoptotic cell death in vitro and inhibited TNBC tumor growth in vivo. This multifunctional NP system efficiently co-delivered GA and pTRAIL, thus representing a promising strategy to treat TNBC and bringing forth a platform strategy for co-delivery of therapeutic DNA and chemotherapeutic agents in combinatorial TNBC therapy
    corecore